Smart Cluster Energy System for the Fish Processing Industry

ISMF Biennial Conference 15th Jan.2019, Cardiff

O pisces

- Funded by the ERDF (European Regional Development Fund) Interreg Ireland Wales Cooperation Programme
- Project Partners:

Academic Partners - Cardiff University, Waterford Institute of Technology Implementation Partners - Milford Haven Port Authority & Bord Iascaigh Mhara

piSCES Aims

- To develop a smart cluster energy system
- Reduce costs for energy intensive processes within the fish processing industry
- Predict future energy consumption
- Maximise renewable energy use & off peak tariffs

Presentation Agenda

Part 1

- **Overview (MHPA Buildings & appliances)**
- Simulation model (Designbuilder)
- Result of simulation model for main appliances
 - Ontology of Fish processing industries
- **Battery model**

Part 2

- Steps to follow
 - Prediction
 - Optimization
 - CUSP demo

Overview Packaway building in MHPA

Milford Haven port is a major port in the UK, and is considered the largest energy port in the UK. The port is responsible for the safe movement of vessels on the Milford Haven and deep water site, on the western coast of the UK.

MILFORD HAVEN ON MAP

Packaway building

Packaway building

Box washing machine

Solar panel with 50 Kw capacity

Cold room

Flake ice

Data analysis

Appliance	How it is works		
1.Box washing machine	The box washing machine has the power capacity 50 Kw. It works only when the fishers want to clean the boxes after use it for a very short time a day.		
2. Lighting system	Lighting system in this building is about 17 double tubes (25 W each). According to staff, fishers do not use it in day time due to daylight. They use it in the night foe a very short period based on the system		
3.Flake ice	Flake ice produces small pieces of ice for use in the cold storage to preserve the fish. It consumes about 32 Kw of power.		
4.Cold storage	Cold storage is under operation all the time to meet the demand for fishers with the quantity they need. Also, it is considered the most power-consuming device in the building. This is because of the low temperature needed (-5 degrees).		

2

Modeling and Simulation

Solar panel with 50 Kw capacity

Flake ice machine

Packaway Building

Result Analysis

Month Actual (kWh)		Simulation (kWh)		
Jan	1114.5777	1091.693488		
Feb	1097.73807	1046.688088		
Mar	1338.39973	1388.604113		
Apr	1655.6705	1656.761288		
Мау	2284.6715	2222.454163		

Ontology of fish processing industries

Ontology for knowledge generation

- Query the knowledge repository to inform prediction and simulation.
- Determine impact of variable on the overall set of objectives.
- Understand the relationships between various components.

Semantic map of fish processing industries

Battery model

Result of Battery model

Steps to follow

Methodology

SIMULATED SCENARIO DEFINITION

Scenario Definition	Holistic Solution
Control Variables	 Ice Flake machine setpoint Cold room setpoint Box washing machine setpoint Lighting setpoint
Objectives	 Desired amount of energy consumption Electrical energy minimization Ice Flake machine setpoint (off=0, on=1) Cold room temperature setpoint (-15 deg.) Box washing machine setpoint (off=0, on=1) Lighting setpoint (off=0, on=1) Boat charging
Effective environmental variables	The most effective variables will be determined after sensitivity analysis
Control Rules	To be generated based on optimized setpoints
Actors	Occupancy sensors, Lighting automation system, automation system, facility manager, actuators, temperature sensors, weather stations.
When applicable	The scenario is applicable to optimize energy and CO2 emissions in the PACKWAY building MHPA.

Prediction

2

STEP 2: THE PREDICTION

INPUT LAYER

OUTPUT LAYER

Objectives for prediction

- Predict electricity consumption for PACKWAY
 - 15 minutes in future
 - 1 hour in future
 - 1 day in future
- Subject to quality of data and quantity of data

A prediction example

PV generation for Packway 2 1.8 1.6 1.4 1.2 PV Generation **PV** Generation 0.8 0.58 0.6 0.4 0.2 Day 4 Day 5 Day -5 Day -4 Day -3 Day -2 Day 2 Day 3 Day -1 [Day 0 Dav Recording days

Prediction by end March 2018 2nd iteration by end of April 2018

- (1h/day)prediction of Packway consumption
- (1h/day) prediction of Packway PV

STEP 2: THE PREDICTION

INPUT LAYER

OUTPUT LAYER

Optimized schedule

Optimized schedule

Νο	Appliance	Power Rating (kW)	Minimum Running Time (minutes)	Interruption of Appliance	Required Usage Frequency	Required Start Time
1	Box washing machine	50 KWh	30	Not Possible	Once a day	Between (6:00- 16:00)
2	Ice Flake machine	30kWh	60	Possible	Twice a day	Between (6:00- 16:00)
3	Cold storage room	30kWh	180	Possible	Twice a day	Between (0:00- 23:45)
4	Lighting system	25 W/per tube	60	Possible	Twice a day	Between (0:00- 23:45)

- Then the model is converted to EnergyPlus model to generate the data set by changing the schedule of selected appliances.
- The data generated with EnergyPlus simulation is then analysed with a stepwise sensitivity analysis approach to determine most sensitive environmental variables.
- ANN -> Date and time info, wind speed, diffuse solar radiation, occupancy, appliances on/off state for the selected time frame, and the remaining duration time for each appliance as inputs.
- Wind power generation, PV electricity generation and total energy consumption and individual energy consumption for each appliance are used as outputs.

Wind Energy Generation **Total Energy Consumption Energy Consumption Appliance 1 Energy Consumption Appliance 2 Energy Consumption Appliance 9**

Outputs

Optimisation results and objectives

- Correlated the PV energy generation with the consumption schedules
- Determining when(at what time) an appliance should start and for how long: <u>Schedule:[State s, Device d, day D, time T]</u>
 - Ice flake: start at 09:00 to 10:30. Day: Monday.
 - Box washer start at 10:30 to 11:30. Day: Monday.

10% Grid Energy Reduced Optimised Weekly Schedule for One Month

Task to follow for optimization

- Task 1: Progress with the simulation model for Packway building
- Task 2: Develop a holistic optimization scenario for Packway building
- Task 3: Calibrate the EnergyPlus simulation models
- Task 4: Start generating data based on the modelling
- Task 5: Train an ANN based on the generated data
- Task 6: Determined optimized setpoints and develop rules